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Background. Previous reports on molecular rapid diagnostic testing (mRDT) do not consistently demonstrate improved clinical out-
comes in bloodstream infections (BSIs). This meta-analysis seeks to evaluate the impact of mRDT in improving clinical outcomes in BSIs.

Methods. We searched PubMed, CINAHL, Web of Science, and EMBASE through May 2016 for BSI studies comparing clinical
outcomes between mRDT and conventional microbiology methods.

Results. Thirty-one studies were included with 5920 patients. The mortality risk was significantly lower with mRDT than with
conventional microbiology methods (odds ratio [OR], 0.66; 95% confidence interval [CI], .54–.80), yielding a number needed to treat
of 20. The mortality risk was slightly lower with mRDT in studies with antimicrobial stewardship programs (ASPs) (OR, 0.64; 95%
CI, .51–.79), and non-ASP studies failed to demonstrate a significant decrease in mortality risk (0.72; .46–1.12). Significant decreases
in mortality risk were observed with both gram-positive (OR, 0.73; 95% CI, .55–.97) and gram-negative organisms (0.51; .33–.78) but
not yeast (0.90; .49–1.67). Time to effective therapy decreased by a weighted mean difference of −5.03 hours (95% CI, −8.60 to −1.45
hours), and length of stay decreased by −2.48 days (−3.90 to −1.06 days).

Conclusions. For BSIs, mRDT was associated with significant decreases in mortality risk in the presence of a ASP, but not in its
absence. mRDT also decreased the time to effective therapy and the length of stay. mRDT should be considered as part of the stan-
dard of care in patients with BSIs.
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Bloodstream infections (BSIs) are associated with significant mor-
bidity andmortality risks and significantly increased length of stay
(LOS) [1, 2]. Delayed administration of effective antibiotics
increases the mortality risk and therefore correct selection of an
antibiotic regimen early in the treatment process is paramount
[3, 4].Delayed identification of the causative organism and culture
susceptibilities may often be responsible for delays in optimal
antimicrobial therapy. Molecular rapid diagnostic testing
(mRDT), which includes tests such as polymerase chain reaction
(PCR), matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry, and peptide nucleic acid fluo-
rescent in situ hybridization (PNA-FISH), has improved on con-
ventional microbiologic methods, reducing time to organism
identification, optimizing antimicrobial therapy, and subsequently
improving clinical outcomes, including mortality rates [5].

Advancement of RDT is included among 5 overarching goals
from the National Action Plan for Combating Antibiotic-Resistant

Bacteria [6]. In addition, the 2016 Infectious Diseases Society
of America antimicrobial stewardship program (ASP) guidelines
recommend the use of rapid diagnostic testing (RDT) with ASP
support and intervention as an addition to conventional methods
for blood specimens to improve clinical outcomes [7].Widespread
implementation of this technology has been limited owing to in-
adequate outcomes data and high costs [8].A recent meta-analysis
included evaluations of the clinical benefits of molecular and phe-
notypic RDT in BSIs but was limited by the time frame of the
literature included, with the most recent study being published
in 2012 [9]. In addition, the impact on LOS was not assessed,
nor was the effect on mortality risk according to ASP presence.
The objective of this systematic review and meta-analysis was to
provide a comprehensive and up-to-date assessment of mRDT’s
effects on mortality risk, time to effective therapy, and LOS,
when compared with conventional microbiology methods in
patients with BSIs.

METHODS

Literature Search
We searched PubMed, CINAHL, Web of Science, and Embase
from inception to 31 May 2016 for BSI studies in English com-
paring clinical outcomes between mRDT and conventional
microbiology methods. We used the following search query:
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(bacteremia or “bloodstream infection”) and (spectrometry or
“matrix assisted laser desorption/ionization” or MALDI-TOF
or microarray or PCR or “nucleic acid” or PNA or molecular
or “polymerase chain reaction”) and (“length of stay” ormortal-
ity ormorbidity or diagnosis or outcome). Two authors (T. T. T.
and J. B. M.) searched the literature and performed article selec-
tion independently. Differences were resolved through consen-
sus involving a third author (K. W. M.). The references for the
included articles were searched manually to identify additional
relevant studies. Unpublished studies were included through
searching abstracts from IDWeek, the Interscience Conference
on Antimicrobial Agents and Chemotherapy, and the European
Congress of Clinical Microbiology and Infectious Diseases from
2007 to 2015, using the keywords “bacteremia” or “bloodstream
infection.”

Study Selection
All studies evaluating the differences in clinical outcomes
between mRDT, either for organism identification and/or resis-
tance mechanism detection, and conventional methods in BSIs
were eligible for inclusion. mRDT was defined as commercially
available molecular tests that can provide results in ≤24 hours.
Studies were included if results were reported for clinical
outcomes of interest. Studies were excluded if they were non-
English studies, if they evaluated infections with mycobacterial,
viral, or parasitic organisms, or if they applied mRDT to nega-
tive blood cultures or direct blood specimens (eg, Septifast).

Outcomes
Outcomes evaluated included overall mortality risk, mortality
risk in studies with ASP, mortality risk by organism, time to ef-
fective therapy, and LOS. Mortality risk was defined as all-cause
30-day or in-hospital mortality risk. Organism types were
grouped as gram positive, gram negative, yeast, or, if a combi-
nation of these, multiple. Time to effective therapy was defined
as the time from either blood specimen collection or positive
test result to a therapy with in vitro activity against the infecting
organism. LOS was defined as total hospital LOS or LOS begin-
ning with culture collection or positivity among either survivors
or all patients within the study. Studies were classified as ASP
studies if the authors reported infectious diseases physician or
pharmacist review of antimicrobial selection based on culture or
mRDT results.

Quality Assessments
Assessments of quality were made by 2 authors (T. T. T. and
J. B. M.) using the Newcastle-Ottawa Scale [10] for observation-
al studies and the Risk of Bias tool for randomized controlled
trials [11]. The Newcastle-Ottawa Scale evaluates for the selec-
tion of patients, comparability of patients, and assessment of
outcomes. The Risk of Bias tool assess whether there is a low,
high, or unclear level of bias based on 5 primary domains of
bias in randomized controlled trials, including selection, perfor-
mance, detection, attrition, and reporting bias [12]. Differences

in quality assessment between the 2 authors were resolved
through consensus involving a third author (K. W. M.).

Data Extraction and Analysis
All meta-analyses were performed using Review Manager
software (The Cochrane Collaboration, version 5.3). Mortality
outcomes were assessed using a random-effects model to esti-
mate pooled odds ratios (ORs) and 95% confidence intervals
(CIs) with weights as described by DerSimonian and Laird
[13]. To express the effect of testing in clinical terms, the num-
ber needed to treat to prevent 1 death was calculated. The effect
of mRDT on time to effective therapy and LOS was evaluated
using a random-effects model and reported as weighted mean
difference with 95% CI. Medians and interquartile ranges or
ranges were converted to means and standard deviations ac-
cording to Wan et al [14]. Publication bias was assessed using
funnel plots and Egger’s test. Heterogeneity between studies
was evaluated with I2 estimation and the Cochran Q test [12].
For heterogeneity testing, results were considered significant at
P < .10, because the Q test has low power. Random-effects uni-
variate meta-regressions were performed for covariates that had
possible effects on an outcome and were reported in ≥10 stud-
ies, using the metaphor package in R software (R Foundation
for Statistical Computing, version 3.2.3). This systematic litera-
ture review and meta-analysis was conducted according to
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Supplementary Table 1).

RESULTS

The literature search resulted in 7273 studies meeting the key-
word criteria (Figure 1). After removal of duplicates, titles and
abstracts were reviewed for 5426 studies. Studies not related to
our search were removed, yielding 40 studies for full text review.
Full-text review identified 5 articles with data not relevant to our
meta-analysis, 3 studies without clinical outcomes, 2 studies
with mRDT in each comparison arm, and 2 studies that evalu-
ated mRDT on blood specimens in septic patients without
positive cultures. Review of the references of the included stud-
ies resulted in 4 additional studies being added to the meta-
analysis. Data were extracted from 31 studies with 5920 patients,
because 2 studies [15, 16] contained overlapping data.

Characteristics of the included studies are shown in Table 1.
Only 6 studies (19.4%) [18, 21, 35, 37, 44, 46] were conducted
outside the United States. The majority of studies included
(26 of 31; 83.9%) were designed as pre- and postintervention
quasi-experimental studies at mRDT initiation. Although
most of the studies reporting study setting were academic med-
ical centers, 2 of the included studies (6.5%) [20, 30] were from
community hospitals. Among studies reporting patient popula-
tion information, adult patients were the most common cohort
studied (95.2%; 20 of 21). Gram-positive organisms were the
most frequently reported BSI type included, occurring in
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17 studies (54.8%), followed by gram-negative organisms with 7
studies (22.6%). Multiple organism and yeast studies comprised
the remainder, with 5 (16.1%) and 2 (6.5%) of the studies,
respectively.

Laboratory practices varied among studies, including mRDT
technologies used, frequency of testing, and reporting processes.
PCR or other microarray technologies were most frequently
used (20 of 31 studies; 64.5%), followed by PNA-FISH (6 of
31; 19.4%) and MALDI-TOF analysis (4 of 31; 12.9%). One
study (3.2%) used both a nanotechnology microarray system
and confirmatory MALDI-TOF analysis [41]. A distinction
between MALDI-TOF analysis of direct blood specimens and
overnight solid media incubation was reported in 4 of 5
MALDI-TOF studies [15, 29, 30, 36], with a single study [29]
reporting the latter method. Of the 19 studies reporting the
frequency of laboratory sample testing, 5 (26.3%) reported
real-time testing, 10 (52.6%) reported batch testing between 1
to 4 times daily, and 3 (15.8%) reported real-time testing during
limited time frames (eg, 7 AM to 7 PM). Among the 5 studies per-
forming real-time testing 24 hours a day, 7 days a week (24 × 7),

mRDT result notifications were reported as being performed in
real time for 2 studies [17, 33],whereas in another study [45] the
protocol called for real-time notification only if resistance genes
were detected. Finally, notification methods also varied between
studies when reported, with the majority of the reporting studies
(17 of 29; 58.6%) reporting directly to the primary team or phy-
sician and 3 studies (10.3%) reporting to the results to nurses.

ASP activities varied by study. The presence of an ASP facili-
tating mRDT represented the majority of the data (20 of 31 stud-
ies; 64.5%). In the 14 studies reporting ASP notification processes,
only half were 24 × 7 real-time. The remainder had set response
hours (eg, 8 AM to 5 PM; Monday–Friday) or once daily review of
results. Two studies [17, 20], both quasi-experimental, explicitly
stated whether the ASP was present in both periods, with 1
[20] having an ASP in the postintervention period only.

Clinical outcomes in BSIs generally favored mRDT over con-
ventional microbiology (Figures 2 and 3). Among 26 studies [5,
15, 18–20, 22–27, 29–34, 36, 37, 39, 40, 42–46], the ORs for mor-
tality risk were significantly lower with mRDT (OR, 0.66; 95%
CI, .54–.80), yielding a number needed to treat of 20.

Figure 1. Flow diagram. Abbreviations: BSI, bloodstream infection; mRDT, molecular rapid diagnostic testing.
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Table 1. Characteristics of Studies Included in Systematic Review and Meta-analysis

Authors (Year) Study Design Setting
Patient

Population
Sample Size, mRDT/

Control, No. of Patients BSI Type Laboratory Tests
mRDT Testing; Notification

Recipient
ASP

Presence
ASP Notification

Process
NOS
Score

Bauer et al [17]
(2010)

Quasi-experimental Tertiary care facility (1150 beds) Adult 82/74 Staphylococcus aureus Conventional vs PCR 24 × 7; physician Yes Real-time (M–F;
8 AM–5 PM)

9

Beuving et al [18]
(2015)

RCT Hospital (750 beds) Adult 129/121 Multiple Conventional vs PCR NR; physician No NA NA

Bias et al [19]
(2015)

Quasi-experimental NR Adult 49/65 Gram-negative
organisms

Conventional vs BC-GN NR; physician and ASP Yes NR 7

Box et al [20]
(2015)

Quasi-experimental 5 Community hospitals Adult 64/103 Gram-positive
organisms

Conventional vs BC-GP 7 AM–7 AM; nurse Yes Real-time (7 AM–

7 PM)
7

Cattoir et al [21]
(2011)

Quasi-experimental Teaching hospital (900 beds) Adult 49/48 Staphylococcus spp. Conventional vs PCR NR; physician No NA 9

Felsenstein et al
[22] (2016)

Quasi-experimental Children’s hospital Pediatric 219/221 Gram-positive
organisms

Conventional vs BC-GP 24 × 7 testing but not real time;
physician

No NA 8

Forrest et al [23]
(2006)

Quasi-experimental Medical center NR 72/76 Yeast Conventional vs PNA-
FISH

Once daily; team and ASP Yes Real-time 7

Forrest et al [24]
(2006)

Case-control Medical center (740 beds) NR 119/84 CoNS Conventional vs PNA-
FISH

Once daily; team and ASP Yes Real-time 9

Forrest et al [25]
(2008)

Quasi-experimental Teaching hospital (600 beds) Adult 95/129 Enterococcus spp. Conventional vs PNA-
FISH

Twice daily; physician and ASP Yes Real-time 7

Frye et al [26]
(2012)

Quasi-experimental 2 Medical centers (each 500 beds) Adult 110/134 Staphylococcus spp. Conventional vs PCR Twice daily M–F, once daily Sat–
Sun; MRSA results to floor

No NA 9

Heil et al [27]
(2012)

Quasi-experimental NR Adult 21/61 Yeast Conventional vs PNA-
FISH

7 AM–9:30 PM; physician and
pharmacist

Yes Real-time 7

Holtzman et al [28]
(2011)

Quasi-experimental Medical center Adult 99/100 CoNS Conventional vs PNA-
FISH

Once daily; EHR only No NA 9

Huang et al [29]
(2013)

Quasi-experimental Health system Adult 245/256 Multiple Conventional vs MALDI-
TOF

NR; ordering clinician and ASP Yes 6 AM–11:30 PM 9

Lockwood et al
[30] (2016)

Quasi-experimental 2 Community hospitals Adult 241/149 Gram-negative
organisms

Conventional vs MALDI-
TOF

NR; nurse and ASP Yes Real-time 7

Ly et al [31] (2008) RCT Tertiary care center (907 beds) Adult 101/101 Staphylococcus spp. Conventional vs PNA-
FISH

Twice daily; treating clinician No NA NA

Macvane et al [32]
(2015)

Quasi-experimental NR Adult 63/50 Gram-negative
organisms

Conventional vs PCR NR; NR Yes NR 7

Macvane et al [33]
(2016)

Quasi-experimental Academic center (709 beds) Adult 23/45 Enterococcus spp. Conventional vs PCR 24 × 7; nurse and pharmacist Yes Real-time (8 AM–

5 PM; M–F)
7

Maslonka et al [34]
(2014)

Case-Control NR NR 55/55 Multiple Conventional vs PCR NR; NR No NA 7

Na et al [35] (2016) Quasi-experimental Academic hospital NR 97/94 Staphylococcus spp. Conventional vs PCR Once daily M–Sat; EHR only No NA 7

Nagel et al [36]
(2014)

Quasi-experimental Health system Adult 117/129 CoNS Conventional vs MALDI-
TOF

NR; physician and ASP Yes 6 AM–11:30 AM 7

Neuberger et al
[37] (2008)

Quasi-experimental Tertiary care medical center NR 42/42 Klebsiella pneumoniae Conventional vs PCR 11 PM–11 AM M–F; physician No NA 9

Nguyen et al [38]
(2010)

Quasi-experimental Academic hospital Adult 94/65 Staphylococcus spp. Conventional vs PCR NR; EHR only No NA 9

Pardo et al [39]
(2016)

Case-control Academic medical center
(939 beds)

Adult 84/252 Multiple Conventional vs PCR Once daily; ASP Yes NR 9

Perez et al [15]
(2013)

Quasi-experimental Quaternary care academic hospital
(1000 beds)

Adult 107/112 Gram-negative
organisms

Conventional vs MALDI-
TOF

3–4 times daily; ASP Yes Real-time 9

Revolinksi et al [40]
(2015)

Quasi-experimental NR Adult 95/133 Gram-positive
organisms

Conventional vs BC-GP NR; provider and pharmacist Yes NR 7

Roshdy et al [41]
(2015)

Quasi-experimental Academic medical center NR 74/65 Streptococcus/
Enterococcus spp.

Conventional vs BC-GP
plus MALDI-TOF

NR; pharmacist Yes NR 7
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Stratification revealed that the ORs for mortality risk were sig-
nificantly lower for BSIs using mRDT with ASP (OR, 0.64; 95%
CI, .51–.79) but failed to achieve significance without ASP sup-
port (0.72; 95% CI, .46–1.12). Similar results were observed
when a sensitivity analysis was performed using studies that
controlled for confounding [18, 24, 29, 31, 37, 39, 45] (Supple-
mentary Figure 1). When mortality risk was evaluated by organ-
ism type (Figure 3), there was no significant difference in the
odds of mortality among yeast isolates (OR, 0.90; 95% CI,
.49–1.67). In contrast, the odds of mortality were reduced
with mRDT in studies of gram-negative (OR, 0.51; 95% CI,
.33–.78), gram-positive (0.73; .55–.97), and multiple organism
types (0.58; .32–1.04). Mortality risk in testing of multiple or-
ganisms had significant heterogeneity (Cochran’s Q P = .07;
I2 = 53%) owing to a study [18] that used both mRDT and
rapid susceptibility testing. Exclusion of that study yielded a
51% decreased odds of mortality in multiple organism testing
(OR, 0.49; 95% CI, .33–.71; Cochran’s Q P = .56; I2 = 0%). Sen-
sitivity analysis using studies controlling for confounding [18,
24, 29, 31, 37, 39, 45] achieved nonsignificant reductions in mor-
tality risk for each organism group (Supplementary Figure 2).
Meta-regressions of covariates by the presence of an ASP
(P = .56), organism type (P = .42), real-time ASP (P = .82), or
real-time mRDT (P = .34) as possible moderators for mortality
risk were not significant.

Among 9 studies [21, 29, 32–35, 37, 40, 41], time to effective
therapy (Supplementary Figure 3) was significantly decreased
by a weighted mean difference of −5.03 hours (95% CI, −8.60
to −1.45 hours) for mRDT versus conventional microbiology.
Time to effective therapy had significant heterogeneity
(Cochran’s Q P = .0002; I2 = 74%) owing to a study [33] that
was limited to vancomycin-resistant enterococci (VRE). Exclu-
sion of that study yielded a time to effective therapy with a de-
creased weighted mean difference of −1.89 hours (95% CI,
−2.43 to −1.36 hours; Cochran’s Q P = .48; I2 = 0%). Evaluation
of that study [33]and VRE subgroup data from 2 studies [39, 41]
yielded a time to effective therapy weighted mean difference of
−26.65 hours (95% CI, −35.43 to −17.88 hours; Cochran’s Q
P = .66; I2 = 0%). Finally, LOS (Supplementary Figure 4) was
significantly shorter with mRDT, by −2.48 days (95% CI,
−3.90 to −1.06 days) and similar results were observed
among subgroups by total hospital LOS and from culture
LOS. Sensitivity analysis was performed using the only 2 studies
[18, 39] that controlled for confounding and reflected a de-
creased LOS by a WMD of −8.08 days (95% CI, −20.59 to
4.44 days; Cochran’s Q P < .0001; I2 = 95%).

Analysis of the potential for publication bias with funnel
plots (Supplementary Figures 5–7) suggested no evidence of
publication bias for the analyses presented in Figures 2 and 3
and Supplementary Figure 3. Similarly, Egger’s regression test-
ing reflected an absence of publication bias for the analyses pre-
sented in Figures 2 and 3 and Supplementary Figure 3 (P = .98,Ta
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P = .98, and P = .07, respectively). However, results of Egger’s
regression testing suggested possible publication bias with the
LOS analysis (Supplementary Figure 4; P = .01).

DISCUSSION

In this systematic review and meta-analysis of 31 studies and
5920 BSI patients, mRDT was associated with a decreased mor-
tality risk and LOS, as well as improved time to effective therapy,
compared with conventional microbiologic methods. The ex-
tent of adoption of mRDT for BSIs among acute care facilities
in the United States is unknown, although the National Action
Plan for Combating Antibiotic-Resistant Bacteria [6] has called
for the use of RDT to identify drug-resistant organisms and im-
prove stewardship. Although a number of observational studies

have supported the use of mRDT with ASPs for improving clin-
ical outcomes, results of a randomized control trial [47] suggest
that these technologies have a limited impact [47]. However,
this study’s definition of standard blood culture processing in-
cluded MALDI-TOF analysis, so mRDT was included in both
comparator groups.

Clinical implications for the use of RDT in BSIs have been
evaluated in 1 meta-analysis [9]. Although that meta-analysis
evaluated the use of RDT with communication of results to pro-
viders, it did not explore the role of ASP. It was also limited by
the time frame of its literature review, and it did not focus solely
on molecular technologies. In our current meta-analysis with 16
additional studies, we specifically explored the relationship be-
tween mRDT and ASP. We found that mortality risk decreased

Figure 2. Mortality outcomes with molecular rapid diagnostic testing (mRDT) versus conventional testing in bloodstream infection. Odds ratios (ORs) were determined with
the Mantel-Haenszel random-effects method. Abbreviations: ASP, antimicrobial stewardship program; CI, confidence interval.
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significantly with mRDT in the presence of ASP but not in its
absence. Thus, we believe our results support the Infectious Dis-
eases Society of America ASP guideline recommendation to use
RDT with ASP facilitation in BSIs [7]. Moreover, our analysis in-
dicates that mRDT would only need to be used in approximately

20 patients with BSI to prevent 1 death within 30 days, which
further supports mRDT as the standard of care in BSIs.

Compared with conventional microbiologic methods, mRDT
was associated with significantly decreased mortality risk among
studies including gram-negative organisms, gram-positive

Figure 3. Mortality with molecular rapid diagnostic testing (mRDT) versus conventional testing by organism type in bloodstream infection. Odds ratios (ORs) were determined
with the Mantel-Haenszel random-effects method. Abbreviation: CI, confidence interval.
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organisms, and multiple infection types, whereas yeast studies
did not achieve significant mortality reductions. However,
among studies controlling for confounding [18, 24, 29, 31, 37,
39, 45], nonsignificant reductions in mortality risk were ob-
served by organism groups. Failure to demonstrate the benefit
of mRDT for mortality risk associated with yeast BSIs or
among studies in the sensitivity analysis may reflect the limited
number of studies and corresponding sample sizes.

Detecting true mortality benefits may be difficult in pre- and
postintervention studies that have not controlled for confound-
ing. Therefore, the use of an outcome more directly related to
mRDT, such as time to effective therapy, may be a better indi-
cator of mRDT benefits. Although few studies reported time to
effective therapy, we did observe a significant decrease in this
parameter. However, the distribution of time to effective thera-
py varied both within and between studies. The importance of
this measure was demonstrated in a study of VRE bacteremia
[3], whose authors reported a 3-fold increase in 30-day mortal-
ity in the absence of effective therapy in the first 48 hours of BSI
and speculated that RDT may help reduce the time to effective
therapy in the setting of VRE. Our results suggest the particular
utility of mRDT in VRE BSIs, improving time to effective ther-
apy by >24 hours. Furthermore, the mean time to effective ther-
apy for all 3 VRE studies included in our analysis ranged from
43.7 to 50.2 hours. We therefore believe that mRDT may have
profound benefits in patients with VRE bacteremia and may
help minimize mortality risk in this population.

Finally, we observed significant decreases in LOS. Although
we did not evaluate costs, the observed decreases in LOS have
significant implications based on cost savings per day of hospi-
talization avoided. A study evaluating the economic impact of
mRDT in BSI demonstrated an estimated $30 000 cost savings
per 100 patients after accounting for mRDT costs [39]. Howev-
er, the generalizability of decreased LOS reported are probably
limited to large hospitals and medical centers, because only 2 of
the included studies were conducted in community hospitals. In
addition, LOS did not achieve significant reductions in the 2
studies that controlled for confounding [18, 39], although the
significant heterogeneity in this analysis and small sample
limit inference of these results.

Our systematic review and meta-analysis have several limita-
tions. For LOS, our analysis suggested possible publication bias.
However, this may be related to the small number of studies
reporting this outcome. Although the generalizability of our
findings for clinical outcomes may be limited to academic med-
ical centers, it should be noted that 2 community hospital
studies were included [20, 30]. In 1 of these studies, although
an ASP was present, pharmacists not trained in infectious dis-
eases responded to the BSIs [30]. Future studies from the com-
munity hospital setting elucidating outcomes would help clarify
best practices in this area. Guidance for recording and reporting
these outcomes when using RDT in BSIs has been described

and should be used by researchers in the future [9]. In addition,
we treated all interventions as equal with regard to technology
type, owing to variability in laboratory practices, such as batch-
ing of assays or performance of MALDI-TOF analysis, either
directly from blood culture bottles containing nutritional
broth or from solid agar incubated overnight. Notification
methods for mRDT results also varied, which could have impli-
cations for clinical outcomes. Although future evaluations may
consider these variations and their relationship to clinical
outcomes, our analysis supports mRDT as a group improves
outcomes in BSIs. In addition, we believe the implementation
of mRDT should include an action plan to ensure correct inter-
pretation, real-time reporting, and guidance on optimal thera-
py. Having 24 × 7 testing, with immediate notifications to the
provider along with direction from an ASP team, will facilitate
the initiation, escalation, or de-escalation of therapy in a mean-
ingful time frame.

In conclusion, mRDT was associated with significant de-
creases in mortality risk in the presence of an ASP, but not in
its absence. Significant decreases in mortality risk were also seen
for studies including gram-positive organisms, gram-negative
organisms, and multiple organism types. In addition, mRDT
was associated with decreased time to effective therapy and
LOS. The greatest benefit of mRDT for improving time to
effective therapy may be for BSIs caused by resistant organisms,
particularly VRE. Additional studies in community hospitals
are needed, as are additional studies elucidating the benefits
of various microbiologic technologies in combination with
ASP to define best practices. Based on the clinical outcomes,
mRDT should be considered as part of the standard of care in
patients with BSIs.
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