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Antibiotic resistance and associated genes are ubiquitous and ancient, with most genes that encode resistance
in human pathogens having originated in bacteria from the natural environment (eg, β-lactamases and fluoro-
quinolones resistance genes, such as qnr). The rapid evolution and spread of “new” antibiotic resistance genes
has been enhanced by modern human activity and its influence on the environmental resistome. This highlights
the importance of including the role of the environmental vectors, such as bacterial genetic diversity within soil
and water, in resistance risk management. We need to take more steps to decrease the spread of resistance genes
in environmental bacteria into human pathogens, to decrease the spread of resistant bacteria to people and
animals via foodstuffs, wastes and water, and to minimize the levels of antibiotics and antibiotic-resistant bac-
teria introduced into the environment. Reducing this risk must include improved management of waste con-
taining antibiotic residues and antibiotic-resistant microorganisms.
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Resistant infections are becoming more difficult or
even impossible to treat with current antibiotics, leading
to infections causing higher morbidity and mortality,
imposing huge costs on our society [1, 2]. This increas-
ing resistance involves many common human patho-
gens, including Enterococcus faecium, Escherichia coli,
Staphylococcus aureus, Klebsiella pneumoniae, Acineto-
bacter baumannii, Pseudomonas aeruginosa, and other
Enterobacter species [2, 3]. However, many of these
bacteria and/or their modes of resistance came from

the natural environment, including bacteria within soils
and water. Antibiotic resistance development is not just
a local public health issue but includes broader envi-
ronmental influences, which are amplified by interna-
tional travel and global trade in foodstuffs.

The World Health Organization (WHO) recently an-
nounced a suite of policies that, if implemented, should
mitigate the emergence and further dissemination of
antibiotic-resistant organisms [4]. These initiatives have
focused on antibiotic stewardship in the hospital and com-
munity settings, and reducing antibiotic use in livestock
production. However, if we are to better manage antibiot-
ic resistance, it is also vital that we consider the broader
environment. Therefore, an improved understanding of
the impacts of human activities on antibiotic resistance
development is needed, such as nonhuman antibiotic
use, pharmaceutical manufacturing waste, domestic and
agricultural waste releases into the environment, and the
influence of poor sanitation and unsafe water supplies.
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There are emerging concerns that anthropogenic impacts are
changing environmental reservoirs of resistance genes, “the re-
sistome” [5], which will increase the probability of recruitment
of resistance genes into clinically relevant pathogens [6]. For
example, wastewater treatment, drug manufacturing, and agri-
cultural effluents release massive quantities of antibiotic resi-
dues and resistant bacteria, selected in the digestive tracts of
people or animals by antibiotic use [7].

Exposure of environmental bacteria to antibiotics as well as
to large numbers of resistant bacteria may accelerate the evolu-
tion of resistance, increase the abundance and distribution of
resistance genes within the resistome that is critical to the de-
velopment of clinical resistance, and increase exchange of anti-
biotic resistance genes between bacteria [8, 9]. People and
animals are connected to each other through the environment,
and it is important to consider antibiotic resistance within the
“One Health” concept, which provides a global strategy for ex-
panding interdisciplinary collaboration and communication.

ANTIBIOTIC RESISTANCE GENES ARE
UBIQUITOUSANDANCIENT

Our world is inhabited by approximately 5 × 1030 bacteria, the
vast majority of which are not pathogenic. Through evolution-
ary time, microorganisms developed capabilities for the biosyn-
thesis of chemicals toxic to bacteria, “antibiotics,” which vary
widely in chemical structures, mode of action, and spectrum of
activity. This was paralleled by the development of strategies to
defeat antibiotics. Environmental bacteria, which predate the
modern antibiotic era by billions of years, carry genes encoding
resistance to antibiotics that have become critically important
in medicine [10]. However, because only approximately 1% of
environmental strains are culturable [11, 12], our knowledge of
the true diversity and composition of the environmental resis-
tome is limited.

The ability to quantitatively link the transfer of specific resis-
tance genes from environmental strains to human pathogens has
been difficult and, grossly underappreciated, although the ancient
nature of environmental resistance is clear [5]. For example,
viable multidrug-resistant bacteria were cultured from the Lechu-
guilla Cave in NewMexico even though it has been totally isolated
for >4 million years [12]. These bacteria were resistant to at least
1 antibiotic and often 7–8 antibiotics, including β-lactams, ami-
noglycosides, and macrolides, as well as newer drugs such as dap-
tomycin, linezolid, telithromycin, and tigecycline. Two distinct
newmacrolide inactivationmechanismswere identified, suggesting
that the utilization of the environmental microbiome could be
used to help combat resistance through the development of novel
antibiotics designed not to be inactivated by these mechanisms.

Likewise, DNA extracted from 30 000-year-old Beringian
permafrost contained genes coding for resistance to β-lactams,

tetracyclines, and glycopeptides, confirming that resistance pre-
dates antibiotic use in medicine and agriculture [10]. Further-
more, major β-lactamase classes predate the existence of humans.
Class A β-lactamases evolved approximately 2.4 billion years
ago and were horizontally transferred into the gram-positive
bacteria about 800 million years ago. The family of genes, in-
cluding the progenitors of CTX-Ms, diverged 200–300 million
years ago [13]. Overall, these studies provide compelling evi-
dence of the breadth of the resistome in environmental strains
and the intrinsic capacity for all bacteria to gain resistance.

Why are genes that confer resistance to antibiotics at clinical-
ly relevant concentrations ubiquitous? One explanation is that
bacteria that produce antibiotics must be resistant to them to
avoid self-destruction. In a highly diverse and competitive mi-
crobial environment such as soil, antibiotic-resistant bacteria
will have a competitive advantage against susceptible bacteria.
In addition, antibiotics are products of secondary metabolism,
and some have important physiological functions at different
concentrations, including the regulation of gene expression and
communication between bacteria [14]. Antibiotics at sublethal
concentrations can promote genetic exchanges through multi-
ple pathways involving various stress responses [15]. Frequency
of transfer of tetracycline-resistance plasmids in S. aureus was
increased by up to 1000-fold in the presence of subinhibitory
concentrations of β-lactams [14, 16]. Also, antibiotics in animal
feed induced prophages in swine fecal microbiomes and con-
tributed to phage-mediated resistance gene transfer [17], high-
lighting multiple environmental vectors for the horizontal
transfer of resistance genes. Finally, many bacteria, while also
resistant to multiple antibiotics, can actually use antibiotics as
their sole carbon source [18]. Overall, the ancient origin of
resistance genes highlights the need to take effective measures
to control antibiotic usage in people and animals, the major
drivers for the modern emergence of resistance. Indeed, in
Australia, low levels of resistance to fluoroquinolones in key
pathogens have resulted from restricted quinolone use in
humans and absent use in food animals [19].

HUMANACTIVITY IS ENHANCING THE
ENVIRONMENTAL RESISTOME

Human activity since the industrialization of antibiotic produc-
tion after World War II has changed the distribution and in-
creased the abundance of resistance genes. Genes encoding
resistance were 2–15 times more abundant in 2008 compared
to the 1970s in DNA extracted from archived soil samples col-
lected between 1940 and 2008 in the Netherlands [20]. In
particular, genes encoding resistance to β-lactams and tetracy-
clines were enriched. Worrisomely, an increase in extended
spectrum β-lactamases (ESBLs) of the CTX-M family was ob-
served, which appears to predate any clinical detection of these
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enzymes. Furthermore, since industrialization, millions of tons
of antibiotics have been released into the environment, includ-
ing via wastewater effluents, land application of animal wastes,
treatment of crop diseases, aquaculture, and many other activi-
ties. For example, 71% of total Danish antibiotic consumption
(kg) in 2010 was for animal production [21]. A similar trend of
antibiotic use in humans vs animals was also observed in
Canada [22].

Public health impacts from antibiotic use in agriculture and
aquaculture have already drawn much attention in the last
decade [23–26]. Importantly, antibiotics used in humans and
animals often belong to the same classes. The WHO has estab-
lished a list of “critically important” antibiotics in humans to
ensure prudent drug use in both human and veterinary medi-
cine [26]. The third- and fourth-generation cephalosporins, flu-
oroquinolones, and macrolides are considered the drugs most
urgently requiring risk management of their use in food
animals. The use of extra-label third-generation cephalosporins
poses an important challenge [27–30]. A comparison of ESBL-
producing E. coli from retail chicken meat and humans has
shown significant genetic similarities with respect to mobile
resistance elements, virulence genes, and genomic backbone
[31, 32]. The relationship between antibiotic use and resistance
is exemplified in a novel manner by recent work on the long-
term exposure of tetracyclines on honeybees, which showed the
accumulation of mobile tetracycline resistance genes closely
related to those from human pathogens in the gut microbiota
of bees [33].

Antibiotic use in large-scale industrial agricultural facilities,
which raise food animals at high-density, highlight many
public health impacts including increased resistance and de-
creased water quality [34–36]. Similarly, impacts from large-
scale and widespread antibiotic use in aquaculture need to be
addressed [20, 37]. Specifically, fish infections are treated
through the administration of antibiotics directly into the
water, avoiding any kind of purification processes [38]. Aqua-
culture is increasingly important because fish production has
increased substantially over the last 50 years with 52.5 million
tons processed in 2008 [39].

Many antibiotics are excreted unchanged, are environmen-
tally persistent, and can be detected downstream of wastewater
treatment plants and adjacent to fields receiving animal
manures [40]. In treated effluents and sewage sludge, antibiotic
residues of several classes range in concentrations from nano-
grams per liter up to low micrograms per liter [41]. Although
these are well below minimum inhibitory concentrations
(MICs), even low concentrations provide selective advantages
for certain resistant strains [42].

Concentrations well above MICs (milligram per liter range)
have been found in treated wastewater from drug manufac-
turing [43, 44]. Environments contaminated with such high

concentrations of antibiotics lead to selection for antibiotic re-
sistance [45]. Antibiotic concentrations in untreated hospital
effluents are lower, but still in the microgram per liter
range [46]. Wastewater treatment and hospital effluents are
therefore potential “hot spots” for the enrichment and trans-
mission of resistant bacteria [42].

We also release large numbers of resistant bacteria that have
multiplied exponentially in the gastrointestinal tracts of people
and animals treated with antibiotics. These bacteria, in agricul-
tural and wastewater effluents, harbor resistance genes and
genetic elements that promote their exchange between bacteria
[47, 48]. Commensals as well as pathogens are important
sources of resistance genes that can be shared, eventually
leading to human infections and disease [49]. Indirect selection
for antibiotic resistance also needs to be considered. Resistance
mechanisms to biocides or heavy metals may be present on the
same genetic elements as those conferring resistance to antibi-
otics [50], causing cross-resistance.

Antibiotic resistance can be acquired through mutation of
existing DNA, uptake of foreign DNA by means of transforma-
tion or phage-mediated transduction, and/or by conjugation
(DNA exchange directly from other bacteria). Transposition of
DNAwithin genomes also plays an important role in the mobi-
lization of resistance determinants. Horizontal gene transfer is
highly important in the evolution and transmission of resis-
tance genes between species and includes the movement of re-
sistance genes from fecal bacteria to environmental bacteria, as
well as the reverse; that is, emergence of novel mechanisms of
acquired resistance in pathogens, genes that originally were
present in harmless bacteria [51]. Transduction has been iden-
tified to be important in the exchange of these genes with other
organisms, particularly in freshwater [52]. Taken together,
these anthropogenic inputs have increased reservoirs of resis-
tant bacteria, including significant acquired resistance in patho-
genic strains [51].

There is an interrelationship between humans, animals, and
the environment. Both methicillin-resistant S. aureus (MRSA)
and ESBL-producing E. coli can be used as indicators to evaluate
the movement of resistant bacteria in the environment [53].
ESBL-producing bacteria cause serious infections around the
world and can be recovered from foods for human consumption
as well as in wildlife [53–55].However, only after ESBL-producing
E. coli appeared in livestock was this organism then identified
in wildlife, suggesting that ESBL-producing E. coli is likely dis-
seminated via manure applications [53]. Similarly, genes respon-
sible for MRSA (mecA) have rarely been reported in isolates
from aquatic environments. However, a mecA gene was recently
identified from phage DNA isolated from waste and natural
water, although its presence did not correlate with fecal contami-
nation [56]. The emergence of novel MRSA strains in animals
and the multiple methicillin resistance gene transfer events that

706 • CID 2013:57 (1 September) • Finley et al



have occurred in these strains point to the powerful selective
pressure exerted by antibiotic use in farming [57].

The rapid emergence of infections associated with multidrug
resistance in Acinetobacter species has been increasingly ob-
served globally. In the 1970s–1980s, Acinetobacter, a gram-neg-
ative organism commonly found in soil and water, was often
susceptible to antibiotics. Today, Acinetobacter is one of the
most difficult resistant gram-negative bacteria to control and
treat [58]. Outbreaks have been associated with contamination
of the hospital environment and equipment with multidrug-
resistant strains introduced into hospitals by returning sol-
diers [59] and earthquake survivors [60]. Multidrug-resistant
A. baumannii possesses almost all typical mechanisms of resis-
tance (eg, multiple β-lactamases including carbapenamases,
aminoglycoside-modifying enzymes, and drug efflux pumps)
that render the organism resistant to almost all classes of antibi-
otics. Resistance islands in the chromosome of A. baumannii
have large numbers of resistance genes and mobile genetic ele-
ments, and explains the sophisticated mechanisms of resistance
in this species [61]. Most of these resistance genes have likely
been acquired from Pseudomonas, Salmonella, or E. coli [61],
probably mediated by environmental reservoirs.

EVIDENCE THAT HUMANPATHOGENS HAVE
ACQUIRED RESISTANCEGENES FROM
ENVIRONMENTAL BACTERIA

There are 2 types of evidence that show human pathogens have
acquired resistance genes from environmental bacteria. These
are phylogenetic evidence (analyses of gene sequences and their
context, revealing historic signatures of resistance determi-
nants), and direct epidemiologic evidence from locations with
less than adequate sanitation, especially poor drinking water
quality.

The origins for some of the most common and problematic
resistance genes are aquatic organisms such as Shewanella
species, which carries a gene encoding quinolone resistance
genes (qnr) on its chromosome [62]. In humans, plasmid borne
qnr genes are more commonly identified in strains from Enter-
obacteriaceae infections, particularly E. coli and Salmonella.
However, in the natural environment, this gene is mainly found
in waterborne species, such as Aeromonas species and Citro-
bacter species, and in the Vibrionaceae family [62].

The origin of CTX-Ms was in Kluyvera species although it
is unknown whether mobilization of the progenitor genes
occurred in the environment or within the human micro-
biome [63]. Kluyvera has been recovered from water, soil,
sewage, hospital sinks, and food of animal origin [64], but rarely
from human clinical infections. However, even more resistance
genes have now been identified, such as KLUC-1, a chromosom-
al β-lactamase found in Kluyvera cryocrescens. Although many of

these have yet to be identified in clinical cases, they represent a
reservoir for new potential clinical ESBLs [52].

WATER ASADISSEMINATION ROUTE FOR
RESISTANCE

Bacteria do not live in isolation, but are readily dispersed
through the world by humans, animals, plants, soil, water, and
air. An underappreciated exposure route for the dissemination
of antibiotic resistance is water, and multidrug-resistant bacte-
ria have been detected from various water sources, including
drinking water. This is a major concern in developing countries
and has been a major route for the transmission of pathogenic
bacteria to people in developed countries in the past [48, 52,
65, 66]. Consumption or handling of water, whether treated or
not, can lead to the colonization of the gastrointestinal tract in
humans [67] and animals with bacteria containing resistance
genes. This in turn, can result in exchange of genes with bacte-
ria (commensal or pathogenic) already present in the human/
animal gut. In addition, water is used for the irrigation of
plants for animal and human consumption, contaminating
products that could also lead to human/animal colonization
with antibiotic-resistant organisms.

Freshwater is an important vehicle for the spread and emer-
gence of antibiotic resistance [52]. Recently, the New Delhi
metallo-β-lactamase-1 (NDM-1) genes were shown to be widely
disseminated in many different bacterial species in water
sources. Of more concern was the high prevalence of NDM-1
genes in bacteria in chlorinated municipal drinking water
samples in India [68]. These NDM-1 genes were identified
among 11 new species including Shigella boydii, Vibrio cholera,
and Aeromonas caviae. The transfer of NDM-1 genes to E. coli,
Salmonella Enteritidis, and Shigella sonnei was optimal at 30°C,
the average daily peak temperature between April to October in
that area of India. This specific gene is of great public health
concern because it confers resistance to all β-lactams, including
carbapenems, and coexists on gene transfer vectors with many
other resistance determinants [68]. This means that with the
rapid and simultaneous transmission of resistance can occur to
almost all clinically important antibiotics [68].

Coastal waters also comprise a potential exposure route of re-
sistant bacteria via contamination with wastewater. Based on
WHO risk assessments, Shuval et al estimated that globally
there are in excess of 120 million cases of gastrointestinal disease
from exposure to coastal waters via recreation or by eating raw
or lightly cooked shellfish [69]. This in itself is not proof of mo-
bilization of resistant bacteria from environment to clinic, but it
illustrates the scale of direct human exposure to contaminated
water. Preliminary data from Gaze et al (written communica-
tion, November 2011) suggest that in some UK bathing waters,
CTX-M carriage in enteric bacteria may be as high as 0.1%.
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Another waterborne organism of major concern is resistant
strains of Salmonella Typhi, which causes human infections
often after exposure/consumption of contaminated drinking
water or foods. Waterborne transmission of resistant Salmonel-
la Typhi was initially reported in the early 1970s and further
supported by epidemiologic data. Most infections occur in de-
veloping countries, where water supplies are often of poor
quality, similar to developed countries of the 19th century,
when poor water quality and Salmonella Typhi infections were
very common. An epidemic of multidrug-resistant typhoid
fever with 8901 cases and 95 associated deaths was attributable
to the consumption of municipal water in Tajikistan [70]. Mul-
tidrug-resistant Salmonella Typhi infections, involving 6000
people in Nepal, were due to lack of chlorination processes in
the local water plant facility [71]. Only when safe drinking
water has been provided to the majority of the population have
such infections been controlled or virtually eliminated [64].

CONCLUSIONS

The bacterial metagenome is vast and bacteria are promiscu-
ous. Rare gene transfer events can be clinically significant, but
this vastness makes it very difficult to pinpoint when and where
gene transfer events have led to acquired resistance in human
pathogens and, in turn, demonstrate causality. However, our
expanding understanding of the ancient origin and modern
evolution of antibiotic resistance genes have demonstrated the
important role of the environment in both the emergence and
spread of resistance. Various human activities have contributed
to the rapid evolution of antibiotic resistance since the start of
the antibiotic era.

Resistant organisms disseminate from humans to animals,
and vice versa, often through various environmental pathways,
including foodstuffs, animal wastes, and water sources. How-
ever, although food products may have the established maxi-
mum antibiotic residue limits, there is no threshold guidance
regarding the presence of resistant bacteria or resistance deter-
minants in water sources. Current water quality guidelines tend
to focus only on specific bacteria, but do not have appropriate
guidance for the presence of antibiotics introduced by manu-
facturers, domestic disposal, agriculture, and/or the medical
sector. In addition, other environmental sources of antibiotics
and resistance genes, such as human and agricultural wastes,
lack strong guidance, particularly for risk management. There-
fore, new guidance is needed and actions taken to reduce selec-
tion pressures in natural and farmed/aquaculture environments
and also to reduce human exposure rates to resistant strains. A
priority should include risk management to minimize antibiot-
ic residues and resistant bacteria in intensive animal facilities as
well as from aquaculture. Pruden et al have recommended the
use of composting and manure digestion for the degradation of

any residual antibiotic present in animal manure, as well as the
need for better rearing methods for fish to decrease the levels of
disease and the need for regulations and monitoring for antibi-
otic use in aquaculture [72]. In addition, several recommenda-
tions were made for the removal of antibiotics or antibiotic
resistance genes present at wastewater treatment plants, looking
at different components of the water cleaning process as critical
control points. Nevertheless, increasing antibiotic resistance
will not be reversed only by removing selective pressure. The
rate of resistance acquisition from intrinsic sources must be
reduced, especially to human pathogens, and this can only be
done through much greater consideration of the natural envi-
ronment in resistance transmission. A One Health approach is
clearly needed to address all the different contributions that
assist in the development and dissemination of antimicrobial-
resistant organisms. Having all the sectors working indepen-
dently is not sufficient; communications and collaborations
must be strengthened to be effective and have an impact.
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