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Much of what is known about the shed-
ding and person-to-person transmission
of Shiga toxin–producing Escherichia
coli (STEC) infection is specific to a
single serogroup, O157 (H7 and nonmo-
tile). In many countries, it accounts for
the greatest number of severe STEC in-
fections, including those associated with
life-threatening postdiarrheal hemolytic
uremic syndrome (HUS) [1–6]. Second-
ary cases, transmitted person-to-person
through fecal shedding, are estimated to
account for 11% of infections [7]. In
certain settings, such as childcare
centers, outbreaks result nearly entirely
from person-to-person spread [8].

Ever since the association was first
made between STEC and HUS in 1983,
it has been known that some non-O157
STEC can also cause HUS [9]. However,

non-O157 STEC strains are diverse;
some are just as virulent as STEC O157,
others tend to cause only mild diarrheal
illness, and others are not human patho-
gens. This spectrum of virulence is gov-
erned in part by the type of Shiga toxin
expressed [10–12] and the presence
of genomic pathogenicity islands that
contain virulence genes, including those
for intestinal adherence [13, 14]. STEC
strains that produce specific Shiga toxin
(Stx) 2 subtypes, especially Stx2a, Stx2c,
and Stx2d, tend to be more virulent
[15–18]. Person-to-person transmission
is an important mode of spread for at
least some of the common non-O157 se-
rotypes [19–27].
Over the past decade, the increasing

use of assays that detect Shiga toxins
or genes that encode them has marke-
dly increased the detection of non-
O157 STEC infections in the United
States [28, 29] and has improved the de-
tection and investigation of outbreaks
worldwide [24, 30, 31]. With this surge
in detection comes increasing ques-
tions from physicians, institutions, and
health officials about reasonable and
practical measures to prevent secondary
transmission.

The 2 primary strategies for prevent-
ing secondary cases can be challenging
to implement and burdensome. First,
patients and their caregivers are advised
to practice careful hygiene. Second, stat-
utory requirements that vary by location
usually mandate exclusion of infected
persons, including those who are asymp-
tomatic, from situations that may facili-
tate transmission (such as attending
childcare facilities) until the diarrheal
illness is resolved and they are no longer
shedding STEC. In many jurisdictions,
lack of shedding is defined as documen-
tation of 2 negative stool cultures on
specimens collected at least 24 hours
apart (and, when relevant, at least 48
hours after cessation of antibiotic
therapy) [32]. Because shedding can be
prolonged, this policy can be onerous
for patients and families.

Modifications could improve these
strategies. Even in the most attentive
households, preventing fecal-oral spread
can be difficult, especially when young
children are present. Hospitalization of
patients acutely ill with virulent STEC
strains can reduce secondary transmis-
sion through contact isolation [33, 34].
Return-to-work and return-to-school
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polices tailored to the virulence of the
STEC strain may lessen burden on
persons who are asymptomatically shed-
ding low-virulence organisms [22, 27].
Infections caused by less virulent strains
could be handled more like salmonello-
sis, in which persons with good hygiene
can often return to work or school when
no longer symptomatic [32].

It is possible that antibiotic therapy
could further reduce both the risk of
secondary transmission and the social
impactofexclusionpolicies.Findings from
observational studies suggest that antibi-
otic treatment of STEC O157 diarrhea
may increase the risk of HUS [35, 36],
and this caution has been extended to
other STEC strains. However, harm
from such treatment has not been
proven through randomized controlled
trials, and observational studies suffer
from biases such as greater likelihood of
antibiotic treatment of patients present-
ing with more severe illness. Neverthe-
less, the lack of strong data supporting a
benefit from treatment of the diarrheal
illness, coupled with the physician’s in-
junction to do no harm, cautions against
antibiotic treatment. However, antibiotic
treatment of persons in later stages of
STEC infection may carry a lower risk.
For example, one study reported better
outcomes among patients with HUS
who received antibiotics [37]. Addition-
ally, the authors of a small case series of
persons treated with antibiotics for
asymptomatic carriage of a variety of
non-O157 STEC strains concluded that
it may be a safe eradication method for
less virulent STEC strains [38].

Studies of the massive, tragic out-
break of STEC O104:H4 infections in
Germany in 2011 have yielded informa-
tion on the effectiveness of antibiotics in
shortening the duration of shedding. In
this issue of Clinical Infectious Diseases,
Vonberg et al make elegant use of limited
data to study how shedding of this rare
enteroaggregative Stx2a-producing E.
coli strain was affected by antibiotic
(primarily azithromycin) administration.

This analysis was made possible in
large part by the experimental use of
eculizumab to treat HUS. Adminis-
tration of this immunosuppressive drug
requires antibiotic prophylaxis for the
prevention of meningitis. The German
Society of Infectious Diseases recom-
mended azithromycin for this purpose
because it was less likely to induce Stx
release than antibiotics of other classes
in vitro [39, 40].
Vonberg et al report the following: (1)

the median duration of shedding was
17–18 days among mostly adult patients
treated at tertiary care hospitals, a large
percentage of whom had HUS; (2) shed-
ding can persist for >150 days; and (3)
factors associated with shorter shedding
duration included age >15 years, HUS,
and receipt of antibiotics during hospi-
talization. After adjustment for other
factors, treatment with antibiotics was
found to reduce median shedding dura-
tion by 30% (Table 3 of Vonberg et al).
As the authors mention, their findings
should not be generalized to all STEC.
Different mechanisms of intestinal ad-
herence may result in differing shedding
dynamics between the enteroaggregative
strain studied and the far more common
non-enteroaggregative STEC. Of note,
the direction of impact of HUS and anti-
biotic treatment on shedding duration
demonstrated in some small analyses of
STEC O157 [41, 42] was different from
that reported by Vonberg et al.
The findings of Vonberg et al expand

upon those of a single-center study [43]
by more rigorously assessing the inde-
pendent effects of antibiotic treatment
and HUS on shedding duration. How-
ever, it is still possible that the associa-
tion between antibiotic treatment and
decreased shedding duration remained
partially confounded by disease severity.
Although the authors rightly chose ac-
cepted criteria to define HUS, HUS
cases exhibit a wide spectrum of sever-
ity. Furthermore, some patients with
severe illness (eg, colitis) do not have
HUS [44]. In this outbreak, eculizumab,

and hence antibiotics, were administered
to patients with the most severe mani-
festations of HUS [37]. Therefore, simply
adjusting for the presence of HUS likely
did not fully control for disease severity.
The authors strengthen their argument
by examining patients who did not
receive antibiotics and finding no diffe-
rence in shedding duration among pa-
tients with and those without HUS.
However, a similar concern about the
spectrum of HUS applies: Patients with
HUS who did not receive eculizamub
(and therefore antibiotics) generally had
milder HUS, and the severity of their ill-
nesses may have been similar to hospi-
talized patients without HUS. In future
analyses, inclusion of additional markers
of disease severity, such as leukocyte
count, may more fully control for
disease severity [45–47].

Additional information that would
aid in the interpretation of the data pre-
sented by Vonberg et al includes the fol-
lowing: (1) a description of discordant
results between culture and culture-
independent tests for STEC infection,
(2) the effect of antibiotic treatment on
the duration of diarrhea, (3) a summary
of illness status (eg, diarrhea, HUS, or
convalescence) and day of illness at the
time of antibiotic administration, (4) the
number of patients evaluated for inter-
mittent shedding and results of those
tests, and (5) specific assessment of the
effect of azithromycin on shedding dura-
tion. We highlight the value of the first 2
factors.

Although it was reasonable to aggre-
gate culture, polymerase chain reaction
(PCR), and enzyme immunoassay (EIA)
results to evaluate shedding, the sensitiv-
ity and specificity of each test in this
setting are uncertain. Because all stool
samples were cultured, a subanalysis that
evaluated shedding as confirmed by
culture might have provided specific in-
formation on a single, widely accepted
measure. We also do not know if strains
isolated late in the shedding periods
continued to be Shiga toxin positive; STEC
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can lose toxin genes in vivo [48, 49]. A
summary of the frequency of discordant
results between culture and culture-
independent tests and how such discor-
dance varied by time would have added
valuable data about the relative duration
of positivity of different tests. This is
of practical importance. Clinicians and
health departments are increasingly ask-
ingifcultureandculture-independenttests
can be used interchangeably for exclusion
decisions. If EIA or PCR were more sen-
sitive than culture, it is possible that an
important proportion of the patients
with prolonged positivity of these tests
were no longer shedding viable organ-
isms in numbers sufficient to detect in
culture; these patients may pose less risk
of disease transmission. Nevertheless,
the authors and medical centers deserve
praise for culturing all stools and not
relying solely on culture-independent
tests [28].

Presumably, persons with active diar-
rhea are more likely to spread STEC
than asymptomatic shedders. Therefore,
including resolution of diarrhea as a sec-
ondary endpoint would have been inter-
esting. Further research is needed to
understand the actual risk of asymptom-
atic shedders’ transmitting illness in
various settings and how the risk varies
by the number of organisms shed. At
some threshold, the risk of transmission
from these persons likely approaches the
risk of transmission from undetected
shedders. In some areas, 1% of healthy
persons’ stools yield STEC [50], a reason
to reinforce routine handwashing.

We commend the authors for cautious-
ly interpreting their findings. From the
public health–based and evidence-based
medicine perspectives, many questions
remain before antibiotic-mediated eradi-
cation could be considered an effective
strategy for safely preventing secondary
transmission of STEC infections. Ran-
domized controlled trials are needed and
should begin with patients infected with
low-virulence strains who are beyond
the period of highest risk for developing

HUS. Such studies should include long-
term follow-up to ensure that short-term
antibiotic-mediated elimination of STEC
is not followed by increased likelihood of
long-term carriage, as has been observed
with nontyphoidal Salmonella [51].
The most important and effective

means of preventing secondary cases
will likely always remain early identifi-
cation of primary cases with rapid im-
plementation of hygienic and isolation
precautions. Development of point-of-
care tests that can identify virulence
factor profiles associated with severe
disease could aid in early implementa-
tion of these measures. Ongoing efforts
are needed to more fully understand the
bacterial and host factors that determine
virulence so that tiered exclusion policies
that protect the public while minimizing
costs to individual patients and families
may continually be refined [13].
From the perspective of the individual

patient whose diarrhea has resolved, de-
cisions regarding the use of antibiotics
to shorten time away from work or
school should be made on a case-
by-case basis by the patient (or parent)
and physician, all fully informed of the
virulence characteristics of the infecting
strain and the possible risks and benefits
of treatment [52, 53].
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