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We randomized 115 children to trivalent inactivated influ-
enza vaccine (TIV) or placebo. Over the following 9 months,
TIV recipients had an increased risk of virologically-
confirmed non-influenza infections (relative risk: 4.40; 95%
confidence interval: 1.31-14.8). Being protected against
influenza, TIV recipients may lack temporary non-specific
immunity that protected against other respiratory viruses.

Influenza vaccination is effective in preventing influenza virus
infection and associated morbidity among school-aged chil-
dren [1, 2]. The potential for temporary nonspecific immunity
between respiratory viruses after an infection and consequent
interference at the population level between epidemics of these
viruses has been hypothesized, with limited empirical evidence
to date, mainly from ecological studies [3–15]. We investigated
the incidence of acute upper respiratory tract infections (URTIs)
associated with virologically confirmed respiratory virus
infections in a randomized controlled trial of influenza
vaccination.

METHODS

Recruitment and Follow-up of Participants
In a double-blind randomized controlled trial, we randomly
allocated children aged 6–15 years to receive 2008–2009 seaso-
nal trivalent influenza inactivated vaccine (TIV; 0.5 mL Vaxi-
grip; Sanofi Pasteur) or placebo [16]. Serum specimens were
obtained from participants before vaccination from November
through December 2008, a month after vaccination, in midstu-
dy around April 2009, and at the end of the study from August
through October 2009. Participants were followed up for ill-
nesses through symptom diaries and telephone calls, and
illness reports in any household member triggered home visits
during which nasal and throat swab specimens (NTSs) were
collected from all household members. We defined the follow-
up period for each participant from 14 days after receipt of
TIV or placebo to collection of midstudy serum samples as the
winter season and from collection of midstudy samples
through final serum sample obtainment as the summer season.

Proxy written informed consent was obtained for all partici-
pants from their parents or legal guardians, with additional
written assent from those ≥8 years of age. The study protocol
was approved by the Institutional Review Board of Hong
Kong University.

Laboratory Methods
NTSs were tested for 19 respiratory viruses by the ResPlex II Plus
multiplex array [17–19] and for influenza A and B by reverse-
transcription polymerase chain reaction (RT-PCR) [16, 20]
(Supplementary Appendix). We refer to infections determined
by these assays as “confirmed” infections. Information on influ-
enza serology is provided in the Supplementary Appendix .

Statistical Analysis
We defined an acute respiratory illness (ARI) determined by
self-reported signs and symptoms as ≥2 of the following signs
or symptoms: body temperature ≥37.8°C, headache, sore
throat, cough, presence of phlegm, coryza, and myalgia [16].
We defined febrile acute respiratory illness (FARI) as body
temperature ≥37.8°C plus cough or sore throat. Because du-
ration of follow-up varied by participant, we estimated the in-
cidence rates of ARI and FARI episodes and confirmed viral
infections overall and during the winter and summer seasons
and estimated the relative risk of these episodes for partici-
pants who received TIV versus placebo with use of the in-
cidence rate ratio using Poisson regression (Supplementary
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Appendix). All statistical analyses were conducted using R,
version 2.11.0 (R Development Core Team, Vienna, Austria).
Data and syntax to reproduce these statistical analyses are
available on the corresponding author’s Web site.

RESULTS

Among the 115 participants who were followed up, the
median duration of follow-up was 272 days (interquartile
range, 264–285 days), with no statistically significant differ-
ences in age, sex, household size, or duration of follow-up
between TIV and placebo recipients (Table 1). We identified
134 ARI episodes, of which 49 met the more stringent FARI
case definition. Illnesses occurred throughout the study period
(Supplementary Appendix Figure 1). There was no statistically
significant difference in the risk of ARI or FARI between par-
ticipants who received TIV and those who received placebo,
either during winter or summer 2009 (Table 2).

We were able to collect 73 NTSs for testing from partici-
pants for 65 of 134 (49%) ARI episodes, which included 22 of
49 (45%) FARI episodes. The mean delay between ARI onset
and collection of first NTS was 1.22 days, and 5% of NTSs
were collected >3 days after illness onset, with no statistically
significant differences between TIV and placebo recipients.
We detected respiratory viruses in 32 of 65 NTSs (49%) col-
lected during ARI episodes, which included 12 of 22 (55%)
FARI episodes. We collected 85 NTSs from participants at
times when one of their household contacts reported an acute
URTI but the participants were not ill, and identified viruses
in 3 of the specimens (4%), including influenza A (H3N2),
coxsackie/echovirus, and coronavirus 229E.

There was no statistically significant difference in the risk of
confirmed seasonal influenza infection between recipients of
TIV or placebo, although the point estimate was consistent
with protection in TIV recipients (relative risk [RR], 0.66; 95%
confidence interval [CI], .13–3.27). TIV recipients had signi-
ficantly lower risk of seasonal influenza infection based on
serologic evidence (Supplementary Appendix). However,
participants who received TIV had higher risk of ARI associ-
ated with confirmed noninfluenza respiratory virus infection
(RR, 4.40; 95% CI, 1.31–14.8). Including 2 additional con-
firmed infections when participants did not report ARI, TIV
recipients had higher risk of confirmed noninfluenza res-
piratory virus infection (RR, 3.46; 95% CI, 1.19–10.1).
The majority of the noninfluenza respiratory virus detections
were rhinoviruses and coxsackie/echoviruses, and the in-
creased risk among TIV recipients was also statistically signi-
ficant for these viruses (Table 3). Most respiratory
virus detections occurred in March 2009, shortly after a
period of peak seasonal influenza activity in February 2009
(Figure 1).

Table 1. Characteristics of Participants and Duration of Follow-up

Characteristic
TIV

(n = 69)
Placebo
(n = 46)

Age group, No. (%)
6–8 years 19 (28) 16 (35)

9–11 years 41 (59) 27 (59)

12–15 years 9 (13) 3 (7)
Female sex, No. (%) 30 (43) 23 (50)

Median duration of follow-up, days 272 272

Mean no. of individuals per
household

3.7 3.6

Abbreviation: TIV, trivalent inactivated influenza vaccine.

Table 2. Incidence Rates of Acute Upper Respiratory Tract Infection Among 115 Participants Aged 6–15 Years Who Received Trivalent
Inactivated Influenza Vaccine or Placebo

Variable

TIV (n = 69) Placebo (n = 46)

Relative Risk (95% CI) P ValueRatea (95% CI) Ratea (95% CI)

Winter 2009

ARIb episodes 2080 (1530–2830) 2260 (1550–3300) 0.92 (.57–1.50) .74
FARIb episodes 609 (346–1070) 753 (392–1450) 0.81 (.34–1.92) .63

Summer 2009

ARIb episodes 1510 (1130–2020) 1160 (757–1780) 1.30 (.78–2.18) .31
FARIb episodes 658 (424–1020) 442 (221–884) 1.49 (.65–3.38) .33

Abbreviations: ARI, acute respiratory illness; CI, confidence interval; FARI , febrile acute respiratory illness; TIV, trivalent inactivated influenza vaccine.
a Incidence rates were estimated as the number of ARI or FARI episodes per 1000 person-years of follow-up.
b ARI was defined as at least 2 of the following symptoms: body temperature ≥37.8°C, cough, sore throat, headache, runny nose, phlegm, and myalgia; FARI
was defined as body temperature ≥37.8°C plus cough or sore throat.
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DISCUSSION

In the prepandemic period of our study, we did not observe a
statistically significant reduction in confirmed seasonal influ-
enza virus infections in the TIV recipients (Table 3), although
serological evidence (Supplementary Appendix) and point es-
timates of vaccine efficacy based on confirmed infections were
consistent with protection of TIV recipients against the seaso-
nal influenza viruses that circulated from January through
March 2009 [16]. We identified a statistically significant in-
creased risk of noninfluenza respiratory virus infection among
TIV recipients (Table 3), including significant increases in the
risk of rhinovirus and coxsackie/echovirus infection, which
were most frequently detected in March 2009, immediately
after the peak in seasonal influenza activity in February 2009
(Figure 1).

The increased risk of noninfluenza respiratory virus infec-
tion among TIV recipients could be an artefactual finding; for
example, measurement bias could have resulted if participants
were more likely to report their first ARI episode but less likely
to report subsequent episodes, whereas there was no real differ-
ence in rhinovirus or other noninfluenza respiratory virus in-
fections after the winter influenza season. The increased risk
could also indicate a real effect. Receipt of TIV could increase
influenza immunity at the expense of reduced immunity to
noninfluenza respiratory viruses, by some unknown biological

mechanism. Alternatively, our results could be explained by
temporary nonspecific immunity after influenza virus infec-
tion, through the cell-mediated response or, more likely, the
innate immune response to infection [21–23]. Participants who
received TIV would have been protected against influenza in
February 2009 but then would not have had heightened non-
specific immunity in the following weeks. They would then
face a higher risk of certain other virus infections in March
2009, compared with placebo recipients (Figure 1). The dur-
ation of any temporary nonspecific immunity remains uncer-
tain [13] but could be of the order of 2–4 weeks based on these
observations. It is less likely that the interference observed
here could be explained by reduced community exposures
during convalescence (ie, behavioral rather than immunologic
factors) [14].

The phenomenon of virus interference has been well
known in virology for >60 years [24–27]. Ecological studies
have reported phenomena potentially explained by viral inter-
ference [3–11]. Nonspecific immunity against noninfluenza
respiratory viruses was reported in children for 1–2 weeks
after receipt of live attenuated influenza vaccine [28]. Interfer-
ence in respiratory and gastrointestinal infections has been re-
ported after receipt of live oral poliovirus vaccine [29–32].

Our results are limited by the small sample size and the
small number of confirmed infections. Despite this limitation,
we were able to observe a statistically significant increased risk

Table 3. Incidence Rates of Respiratory Virus Detection by Reverse-Transcription Polymerase Chain Reaction and Multiplex Assay

Variable

TIV (n = 69) Placebo (n = 46)

P ValueNo. Ratea (95% CI) No. Ratea (95% CI)

Any seasonal influenza 3 58 (19–180) 3 88 (28–270) .61
Seasonal influenza A (H1N1) 2 39 (10–160) 2 59 (15–240) .68

Seasonal influenza A (H3N2) 1 19 (3–140) 0 0 (0–88) .31

Seasonal influenza B 0 0 (0–58) 1 29 (4–210) .17
Pandemic influenza A (H1N1) 3 58 (19–180) 0 0 (0–88) .08

Any noninfluenza virusb 20 390 (250–600) 3 88 (28–270) <.01

Rhinovirus 12 230 (130–410) 2 59 (15–240) .04
Coxsackie/echovirus 8 160 (78–310) 0 0 (0–88) <.01

Other respiratory virusc 5 97 (40–230) 1 29 (4–210) .22

ARI episode with specimen collected but no virus detected 19 369 (235–578) 14 412 (244–696) .75
ARI episode with no specimen collected 41 796 (586–1080) 28 824 (569–1190) .89

Incidence rates are from respiratory specimens collected from 115 participants aged 6–15 years who received trivalent influenza vaccine or placebo during 134
acute respiratory illness episodes.

Abbreviations: ARI, acute respiratory illness; CI, confidence interval; TIV, trivalent inactivated influenza vaccine.
a Incidence rates were estimated as the no. of virus detections or illness episodes per 1000 person-years of follow-up. ARI was defined as at least 2 of the
following symptoms: body temperature ≥37.8°C, cough, sore throat, headache, runny nose, phlegm, and myalgia.
b In TIV recipients there were 4 detections with both rhinovirus and coxsackie/echovirus, and 1 detection with both coxsackie/echovirus and coronavirus NL63.
c Including positive detections of coronavirus, human metapneumovirus, parainfluenza, respiratory syncytial virus (RSV). The ResPlex II multiplex array tested for
19 virus targets including influenza types A and B (including 2009-H1N1), RSV types A and B, parainfluenza types 1–4, metapneumovirus, rhinovirus,
coxsackievirus/echovirus, adenovirus types B and E, bocavirus, and coronavirus types NL63, HKU1, 229E, and OC43.
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of confirmed noninfluenza respiratory virus infection among
TIV recipients (Table 3). A negative association between sero-
logic evidence of influenza infection and confirmed nonin-
fluenza virus infection in winter 2009 was not statistically
significant (odds ratio, 0.27; 95% CI, .01–2.05) (Supplemen-
tary Appendix). One must be cautious in interpreting serology
in children who have received TIV [2, 33]. Finally, acute URTI
incidence was based on self-report with regular telephone re-
minders, and we may have failed to identify some illnesses
despite rigorous prospective follow-up.

Temporary nonspecific immunity leading to interference
between epidemics of respiratory viruses could have important
implications. First, as observed in our trial, TIV appeared to
have poor efficacy against acute URTIs (Table 2), apparently
because the protection against influenza virus infection con-
ferred by TIV was offset by an increased risk of other respirat-
ory virus infection (Table 3). Second, interference between
respiratory viruses could suggest new approaches to mitigating
epidemics [32]. Mass administration of live polio vaccine
in children has been used to control enterovirus 71 epide-
mics [10, 31]. Finally, viral interference could bias estimates
of influenza vaccine effectiveness in test-negative case-control
studies (Supplementary Appendix) [2, 34–43]. One test-
negative study reported an association between receipt of TIV
and the risk of influenza-like illness associated with a nonin-
fluenza virus [38].

Additional work is required to more fully characterize tem-
porary nonspecific immunity overall and in specific groups,
such as children. Animal studies [44–50] and volunteer adult
human challenge studies [51] could provide useful evidence.
Additional community-based observational cohort studies and
community-based experimental studies, such as our vaccine
trial, may be particularly suitable for investigating temporary
nonspecific immunity, because most acute URTIs do not
require medical attention.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online
(http://www.oxfordjournals.org/our_journals/cid/). Supplementary mater-
ials consist of data provided by the author that are published to benefit the
reader. The posted materials are not copyedited. The contents of all sup-
plementary data are the sole responsibility of the authors. Questions or
messages regarding errors should be addressed to the author.
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Figure 1. Timing of influenza and other respiratory virus detections in
115 participants aged 6–15 years (A–D ), compared with local influenza
surveillance data (E ). Solid red bars indicate detections in 69 participants
who received 2008–2009 trivalent inactivated influenza vaccine, and
black dashed bars indicate detections in 46 participants who received
placebo. The bottom panel shows local laboratory surveillance data on
the proportion of influenza virus detections among specimens submitted
to the Public Health Laboratory Service (PHLS). Less than 2% of PHLS
specimens were positive for influenza B throughout the year. “Other
viruses” included coronavirus, human metapneumovirus, parainfluenza,
and respiratory syncytial virus.
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